Step of Proof: strict_part_irrefl
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
strict
part
irrefl
:
T
:Type,
R
:(
T
T
),
a
,
b
:
T
. strict_part(
x
,
y
.
R
(
x
,
y
);
a
;
b
)
(
(
a
=
b
))
latex
by ((Unfolds ``not strict_part`` 0)
CollapseTHEN (((RepD)
CollapseTHENA ((Auto_aux (first_nat
C
1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
R
:
T
T
C1:
3.
a
:
T
C1:
4.
b
:
T
C1:
5.
R
(
a
,
b
)
C1:
6.
R
(
b
,
a
)
C1:
7.
a
=
b
C1:
False
C
.
Definitions
t
T
,
P
&
Q
,
A
,
x
(
s1
,
s2
)
,
strict_part(
x
,
y
.
R
(
x
;
y
);
a
;
b
)
,
P
Q
,
,
x
:
A
.
B
(
x
)
Lemmas
not
wf
origin